SUPPLEMENTARY PROBLEMS FOR CHAPTER 5

1. A linear shift invariant system is described by the difference equation

$$y[n] = 0.3y[n-1] + x[n] + 1.2x[n-1]$$

- (a) Is the system minimum-phase? Tell why or why not.
- (b) Write a pair of difference equations involving the auto- and cross-correlation functions which when solved would allow you to find $R_y[l]$ if you knew $R_x[l]$.
- (c) Solve the difference equations for $R_y[l]$ assuming the input is binary white noise with variance $\sigma_x^2 = 2$.
- (d) If the input is the white noise process in part (c), what is the complex spectral density function of the output $S_y(z)$?
- (e) Solve the given difference equation for the system impulse response and by convolution find $R_y[l]$. Transform $R_y[l]$ to find $S_y(z)$ and check with your answer to part (d).
- 2. Beginning with the diagram of Fig. 5.2, and without referring to the table, reconstruct Table 5.1 on page 238.
- 3. Tell which of the following are legitimate complex power spectral density functions.

(i)
$$S_x(z) = \frac{z - 4 + z^{-1}}{2z - 5 + 2z^{-1}}$$

(ii)
$$S_x(z) = \frac{2z + 1 + 2z^{-1}}{-2z + 5 - 2z^{-1}}$$

Hint: Consider the innovations representation.

4. A random process x[n] with correlation function

$$R_x[l] = \frac{4}{3} \left(\frac{1}{2}\right)^{|l|}$$

is applied to a real unknown linear shift-invariant system. The output of the system is another random process y[n] with complex spectral density function

$$S_y(z) = \frac{0.2z - 1.04 + 0.2z^{-1}}{0.5z - 1.25 + 0.5z^{-1}}$$

What is the system function H(z) of the system? (Assume that the system is minimum-phase.)

5. A discrete random signal x[n] is input simultaneously to two linear shift-invariant systems with impulse responses h[n] and g[n].

- (a) Find an expression for the cross-correlation function between the two outputs in terms of the input correlation function $R_x[l]$ and the impulse responses of the two systems. Express this in terms of simple convolution operations.
- (b) Find the corresponding expression for the complex cross-spectral density function for the two outputs in terms of H(z), G(z), and $S_x(z)$. Evaluate this at $z = e^{j\omega}$ to obtain an expression for the cross-spectral density function.
- 6. A real time-invariant system is described by the difference equation

$$y[n] = ay[n-1] + x[n]$$

where x is the input and y is the output.

- (a) What is the cross-correlation function $R_{yx}[l]$ between the output and the input when the input is white noise with variance σ_o^2 ?
- (b) If the input is a Bernoulli process with $P = \frac{1}{2}$, what is the complex spectral density function $S_y(z)$?
- 7. A random process x[n] with complex spectral density function

$$S_x(z) = \frac{-\sqrt{3}}{z - 4/\sqrt{3} + z^{-1}}$$

is passed through the linear shift-invariant filter shown below:

- (a) Find the complex spectral density function of the filter output $S_y(z)$.
- (b) Find and draw the innovations representation for y[n].
- 8. Consider the random processes y[n] and x[n] defined in Prob. 7 of Supplementary Problems for Chapter 4.
 - (a) Represent the relation between these processes as a linear shift-invariant filter and draw the block diagram. What is the filter transfer function H(z)?
 - (b) Using this result, compute the power spectral density function and the complex spectral density function for the process y[n]. Express your answers in the simplest possible terms.
- 9. A random process has the complex spectral density function

$$S_x(z) = -12z + 25 - 12z^{-1}$$

- (a) Find and draw the innovations representation for the process.
- (b) Find a *causal stable filter* which if applied to the random process, would convert it to white noise. What is the white noise variance?
- 10. A zero-mean random process x[n] has a correlation function given by

$$R_x[l] = (0.5)^{|l|}$$

Find the impulse response h[n] of the minimum-phase filter shown below that transforms the input into a white noise process w[n] with variance $\sigma_w^2 = 1$.

11. White noise with variance $\sigma_w^2 = 1$ is passed through a linear system with impulse response

$$h[n] = \frac{1}{2} \left(\delta[n] - \delta[n-1] \right)$$

- (a) What is the autocorrelation function of the output?
- (b) What is the power spectral density function of the output?
- 12. (a) Draw the *innovations representation* for the random process x[n] with complex spectral density function

$$S_x(z) = \frac{7}{-12z + 25 - 12z^{-1}}$$

(b) What is the filter H(z) that would convert x[n] to white noise?

